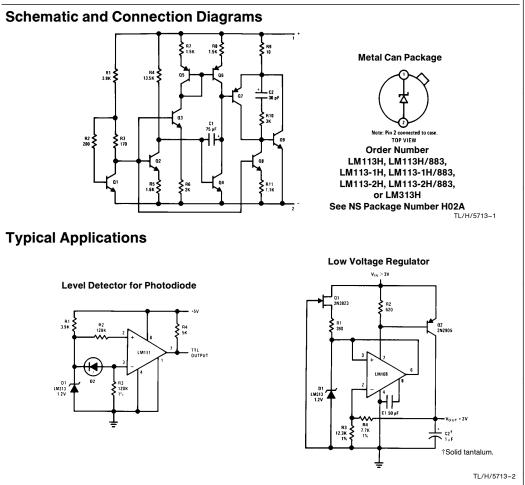



## LM113/LM313 Reference Diode


## **General Description**

The LM113/LM313 are temperature compensated, low voltage reference diodes. They feature extremely-tight regulation over a wide range of operating currents in addition to an unusually-low breakdown voltage and good temperature stability.

The diodes are synthesized using transistors and resistors in a monolithic integrated circuit. As such, they have the same low noise and long term stability as modern IC op amps. Further, output voltage of the reference depends only on highly-predictable properties of components in the IC; so they can be manufactured and supplied to tight tolerances.

## Features

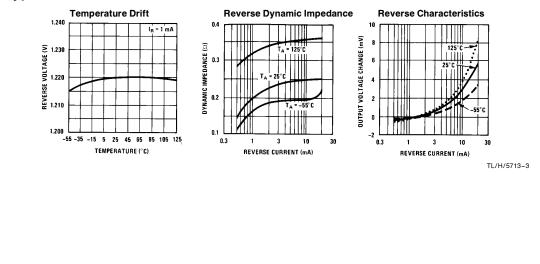
- Low breakdown voltage: 1.220V
- Dynamic impedance of  $0.3\Omega$  from 500  $\mu$ A to 20 mA ■ Temperature stability typically 1% over-55°C to 125°C range (LM113), 0°C to 70°C (LM313) ■ Tight tolerance: ±5%, ±2% or ±1% The characteristics of this reference recommend it for use in bias-regulation circuitry, in low-voltage power supplies or in battery powered equipment. The fact that the breakdown voltage is equal to a physical property of silicon-the energy-band gap voltage-makes it useful for many temperature-compensation and temperature-measurement functions.



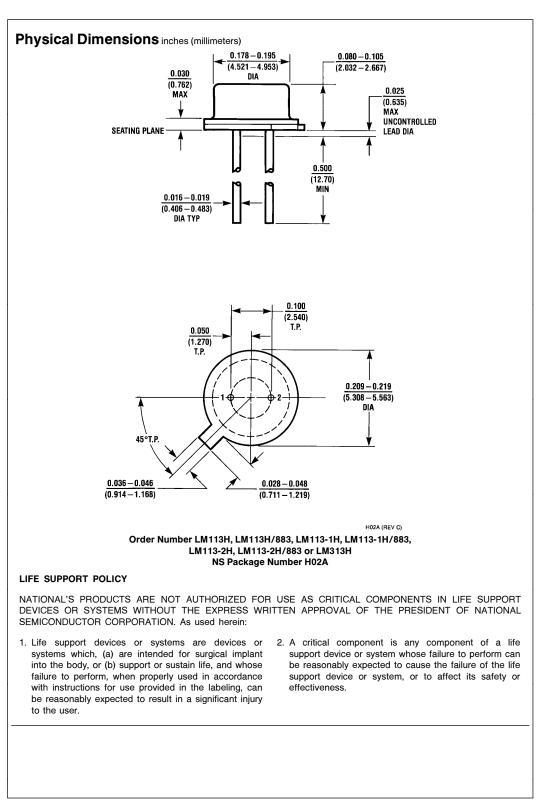
## LM113/LM313 Reference Diode

| Absolute Maximum Ratings                                                                                    |        |                                             |                                     |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------|-------------------------------------|--|--|--|
| If Military/Aerospace specified devices ar                                                                  | • •    | Storage Temperature Range                   | $-65^{\circ}$ C to $+150^{\circ}$ C |  |  |  |
| please contact the National Semiconductor Sales<br>Office/Distributors for availability and specifications. |        | Lead Temperature<br>(Soldering, 10 seconds) | 300°C                               |  |  |  |
| (Note 3)<br>Power Dissipation (Note 1)                                                                      | 100 mW | Operating Temperature Range<br>LM113        | -55°C to + 125°C                    |  |  |  |
| Reverse Current                                                                                             | 50 mA  | LM313                                       | 0°C to +70°C                        |  |  |  |
| Forward Current                                                                                             | 50 mA  |                                             |                                     |  |  |  |

## Electrical Characteristics (Note 2)


| Parameter                                           | Conditions                                                                                                                                                            | Min            | Тур           | Max            | Units  |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|----------------|--------|
| Reverse Breakdown Voltage<br>LM113/LM313<br>LM113-1 | I <sub>R</sub> = 1 mA                                                                                                                                                 | 1.160<br>1.210 | 1.220<br>1.22 | 1.280<br>1.232 | V<br>V |
| LM113-2                                             |                                                                                                                                                                       | 1.195          | 1.22          | 1.245          | V      |
| Reverse Breakdown Voltage<br>Change                 | $0.5 \text{ mA} \leq I_{\text{R}} \leq 20 \text{ mA}$                                                                                                                 |                | 6.0           | 15             | mV     |
| Reverse Dynamic Impedance                           | $I_{R} = 1 \text{ mA}$<br>$I_{R} = 10 \text{ mA}$                                                                                                                     |                | 0.2<br>0.25   | 1.0<br>0.8     | Ω<br>Ω |
| Forward Voltage Drop                                | I <sub>F</sub> = 1.0 mA                                                                                                                                               |                | 0.67          | 1.0            | V      |
| RMS Noise Voltage                                   | $\begin{array}{c} 10 \mbox{ Hz} \leq f \leq 10 \mbox{ kHz} \\ I_{R} = 1 \mbox{ mA} \end{array}$                                                                       |                | 5             |                | μV     |
| Reverse Breakdown Voltage<br>Change with Current    | $\begin{array}{l} 0.5 \text{ mA} \leq I_{R} \leq 10 \text{ mA} \\ T_{MIN} \leq T_{A} \leq T_{MAX} \end{array} \end{array} eq:mass_mass_mass_mass_mass_mass_mass_mass$ |                |               | 15             | mV     |
| Breakdown Voltage Temperature<br>Coefficient        | $1.0 \text{ mA} \leq I_R \leq 10 \text{ mA} \\ T_{MIN} \leq T_A \leq T_{MAX}$                                                                                         |                | 0.01          |                | %/°C   |

Note 1: For operating at elevated temperatures, the device must be derated based on a 150°C maximum junction and a thermal resistance of 80°C/W junction to case or 440°C/W junction to ambient.


Note 2: These specifications apply for  $T_A = 25^{\circ}$ C, unless stated otherwise. At high currents, breakdown voltage should be measured with lead lengths less than 1/4 inch. Kelvin contact sockets are also recommended. The diode should not be operated with shunt capacitances between 200 pF and 0.1  $\mu$ F, unless isolated by at least a 100 $\Omega$  resistor, as it may oscillate at some currents.

Note 3: Refer to the following RETS drawings for military specifications: RETS113-1X for LM113-1, RETS113-2X for LM113-2 or RETS113X for LM113.

## **Typical Performance Characteristics**



# LM113/LM313 Reference Diode

